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Abstract: In recent years, there has been an explosion in the availability of publicly accessible chemical information, including chemical 

structures of small molecules, structure-derived properties and associated biological activities in a variety of assays. These data sources 

present us with a significant opportunity to develop and apply computational tools to extract and understand the underlying structure-

activity relationships. Furthermore, by integrating chemical data sources with biological information (protein structure, gene expression 

and so on), we can attempt to build up a holistic view of the effects of small molecules in biological systems. Equally important is the 

ability for non-experts to access and utilize state of the art cheminformatics method and models. In this review we present recent 

developments in cheminformatics methodologies and infrastructure that provide a robust, distributed approach to mining large and 

complex chemical datasets. In the area of methodology development, we highlight recent work on characterizing structure-activity 

landscapes, Quantitative Structure Activity Relationship (QSAR) model domain applicability and the use of chemical similarity in text 

mining. In the area of infrastructure, we discuss a distributed web services framework that allows easy deployment and uniform access to 

computational (statistics, cheminformatics and computational chemistry) methods, data and models. We also discuss the development of 

PubChem derived databases and highlight techniques that allow us to scale the infrastructure to extremely large compound collections, by 

use of distributed processing on Grids. Given that the above work is applicable to arbitrary types of cheminformatics problems, we also 

present some case studies related to virtual screening for anti-malarials and predictions of anti-cancer activity. 
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1. INTRODUCTION 

 The field of cheminformatics is multi-disciplinary and is an 
amalgam of chemistry, mathematics and computer science. 
Cheminformatics focuses on the development of methods and tools 
to address problems in the management and analysis of chemical 
information. Such information can be of a variety of types including 
chemical structure (in various formats such as SMILES, SDF, 
Chemical Markup Language (CML) and so on) and derived aspects 
of chemical structure (such as number of atoms and various 
descriptors of structure). With the advent of large public 
repositories of chemical and biological data, there has been an 
explosion in the type and amount of data that is now available for 
cheminformatics analysis. Thus, we can now access chemical 
structures of millions of compounds, as well as the biological 
activities of many of these structures in a variety of biological 
assays. Public literature databases now allow one to move from 
chemical structure to specific documents and in some cases vice 
versa. 

 It is clear that there is a need to be able to connect chemical 
structure with biological information (which may include structures 
of biologically relevant macromolecules and biological activities). 
Given the rise of chemical biology and chemogenomics [1], we 
must also look beyond information organization and handling 
issues and develop efficient tools and interfaces that will allow us to 
analyze chemical and biological information in an integrated 
fashion and obtain robust predictions of the biological effects of 
small molecules. This aspect is very important since it is now easy 
to collect information from a variety of high throughput experiments 
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and vendor catalogues. As a result, though access to the data in a 
variety of modes (such as Structured Query Language (SQL) 
queries, web service based queries and so on) is possible, it is 
important to consider that analysis tools and pipelines should also 
be able to access the data in a uniform and standardized manner and 
in the longer term, without human intervention. 

 These requirements are not unique to cheminformatics. Indeed 
computer scientists and software engineers have developed a wide 
array of systems that support the interlinking of geographically 
distributed computational resources. The idea of the modern Grid 
computing was first described by Foster [2]. This architecture aims 
to connect geographically distributed individual computers, clusters 
of computers, and more specialized parallel computing and mass 
storage resources, providing services and client libraries for remote 
job execution, distributed file management, resource information 
management, and integrated security. This architecture has merged 
with the more general Web service architecture. Generally all such 
systems are examples of Service Oriented Architecture, in which 
network accessible services with well-defined access (or 
programming) interfaces communicate with client applications 
using XML-encoded messages transmitted over HTTP (the well 
known protocol that is used by web browsers to send and receive 
data from websites). Typically the service interfaces are defined 
with the Web Service Description Language (WSDL), which 
specifies in a machine readable format what methods are available, 
what their arguments and return values are and what errors (if any) 
might be thrown, and messages are sent via the Simple Object 
Access Protocol (SOAP). Alternative versions of this architecture 
have also become popular. The Representation State Transfer 
(REST) style of Web services replaces WSDL with the basic HTTP 
operations GET, POST, PUT, and DELETE, which operate on 
URLs. The actual content of the URLs may be SOAP messages but 
also RSS (a format first developed for syndication purposes and 
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now commonly employed by blogs and websites) and Atom XML 
formats are popular. Non-XML formats like JavaScript Object 
Notation (JSON) can also be used for messages. In any case, the 
general architecture approaches are similar, and the distinctions do 
not concern us here. The advantages to such architecture are 
obvious: one is no longer restricted to a local machine and 
submitted jobs can be moved to the most appropriate machine (in 
terms of hardware configuration or availability). The NSF-funded 
TeraGrid and the NSF and DOE-funded Open Science Grid are the 
two most prominent examples of Web service-based Grids for 
scientific computing within the United States. 

1.1. What is a Distributed Infrastructure? 

 There are a number of important aspects of such distributed 
infrastructures. First, the broad goal is to enable collaboration 
between different groups in an easy and efficient manner. Such 
collaborations will involve communication between people as well 
as machines, and will exchange a wide variety of data types 
(documents, chemical structures, assay readouts and so on). 
Second, to achieve efficiency, standards for interoperability are 
critical. Such standards apply to various parts of such an 
infrastructure including communication standards, data storage and 
annotation standards as well as authentication standards. Third, 
given the compute intensive nature of many chemical problems, 
easy access to powerful machines such as supercomputers and 
computational grids becomes important. Such infrastructures need 
to adhere to standards developed in the Web and Grid computing 
communities if they are to make use of such resources. In the area 
of cheminformatics, Guha et al. [3] have described the “Blue 
Obelisk”, an umbrella organization of various open source projects, 
whose aim is to define and promulgate community-approved 
standard for various aspects of cheminformatics. There are many 
different features of distributed infrastructures and while a number 
of efforts in the chemical sciences community will be discussed in 
this paper, it should be noted that, all the projects do not aim to 
address all the features noted here. Indeed, this is the utility of such 
infrastructures - as long as they follow standards, they should be 
able to interoperate. We also note that a variety of other fields have 
developed distributed infrastructures and example include 
geography, biology and high energy physics and we do not discuss 
them in this paper and rather, focus on the chemical sciences. 

 It should be noted that a distributed infrastructure is not simply 
about linking computational resources. Indeed, the most common 
feature of such an infrastructure is the ability to connect data 
sources in a seamless fashion. This is especially important given the 
fact that we are faced with a deluge of data from a variety of 
sources. Clearly, no one person or organization is in a position to 
effectively analyze it all. As a result, such data sources must be 
made easily accessible. But it is not sufficient to allow easy 
connections to the sources. Flexible approaches must be provided to 
allow queries and combine results from different data sources. 
Though it is certainly true that simply having large amounts of data 
does not lead to insight, it is also true that no insight will be derived 
from such data collections if they cannot be analyzed in a flexible 
and efficient manner. This observation leads on to the fact that once 
data is accessible, analytic methods must be applied. The 
cheminformatics literature is replete with methods for various tasks. 
Yet, analysis of real world data demands that robust and efficient 
implementations be available. Given the heterogeneity of today’s 
computing infrastructure, it is natural to expect that analysis tools 
and methods will be accessible in a variety of ways. Traditionally, 
command line tools have been used by scientists, giving way to 
GUI’s. However, both are generally restricted to local functionality, 
though many of today’s tools can make use of resources on the 
Internet. As will be described later on, making such tools available 
as distributed services leads to a much more flexible analysis 
infrastructure - one that can be accessed from anywhere and that 
can be incorporated into any thing, be it a command line, GUI or 

workflow tool. Adopting this open service architecture is vital if we 
want academic chemical informatics research to prosper, as it 
enable new tools and pipelines to be developed from existing parts. 
Fig. (1) pictorially demonstrates the evolution of distributed 
infrastructures from both a hardware and software perspective. 

2. OUTLINE 

 The paper is arranged as follows. In Section 3, we discuss 
previous work that has developed distributed infrastructure for 
various aspects of chemistry including ab initio computation, 
crystallography, virtual screening and cheminformatics. We also 
briefly discuss the use of various standards that make such 
infrastructures viable. In Section 4, we discuss the efforts at Indiana 
University to develop a cheminformatics cyber-infrastructure that 
addresses a wide range of topics in cheminformatics ranging from 
ore cheminformatics methods and predictive modeling methods to 
specific tools and data storage. In this section, we highlight how 
each aspect of the infrastructure is designed to provide flexibility in 
terms of access and usage, allowing one to develop novel 
applications in a rapid fashion. In Section 5, we present two case 
studies where we have utilized portions of our infrastructure to 
address real-world problems. Finally, Section 6 summarizes our 
research and discusses future work. 

3. PREVIOUS WORK 

 Though cheminformatics has been in existence since the 
1960’s, it is only recently that large collections of chemical 
information have highlighted the need for infrastructures capable of 
handling them. At the same time, the ability to connect computers 
in networks as well connect networks themselves provides us with 
vast computing power, that in many cases is also cheap. The use of 
compute clusters, which are usually a collection of machines 
located in a single geographical location, is common in many areas 
of high-performance computing such as computational chemistry 
and biology. More recently, the ability to seamlessly utilize 
geographically dispersed computers and networks has led to a 
number of large, distributed, projects such as Folding@Home [4]. 
In both these cases, the focus is on enhancing computational power, 
by virtue of parallelization. The combination of distributed 
computer systems, large collections of chemical and biological 
information, and novel computational methodologies presents us 
with a new way to enhance the usage and accessibility of chemical 
information. By virtue of well-known standards to represent data 
and communicate between programs, we now have the ability to 
“mix and match” methods and data in an unprecedented fashion. 

 Various subfields of chemistry have developed and employed 
distributed infrastructures for a variety of purposes. A number of 
these efforts focus on compute-intensive tasks such as ab-initio 
calculations whereas others represent infrastructures to store and 
disseminate chemical data (such as crystal structures). It is only 
recently that such infrastructures have been developed and 
deployed for problems in cheminformatics in general. In this 
section, we briefly survey past work that have employed distributed 
infrastructures in the chemical sciences. At this point, we should 
note that traditional definitions of cheminformatics can cover all the 
work described in this section. Thus, a cyberinfrastructure for ab-
initio calculations could be described as a cheminformatics project. 
We choose to be a little narrower and consider individual 
infrastructures in terms of their application area. In this sense, a 
cheminformatics cyberinfrastructure would relate to tasks in the 
domain of cheminformatics such as predictive modeling, diversity 
analysis, virtual library generation and so on. Such an infrastructure 
would be distinct from say one designed to support crystallographic 
information, though of course, the two could (and should) 
interoperate with each other. 
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3.1. Infrastructures for Crystallography 

 We first consider a distributed infrastructure designed to store 
and share crystallographic information. Coles et al. [5, 6] described 
an infrastructure, termed the ECSES environment, to share high-
throughput crystallographic information that connected users, 
spread across the Internet, to instrumentation. The infrastructure 
allowed users to remotely monitor crystallographic experiments and 
perform the relevant analysis. For example, a user could provide a 
sample to the crystallography service and then view images from a 
diffractometer and evaluate unit cell parameters in real time, 
communicate with the instrument operator and so on. On 
completion, the crystallographic data is stored in a local database. 
The environment then allows a user to search databases remotely 
for crystal structures that are similar to the one generated. The 
ECSES environment was constructed using Grid (specifically, 
Globus [7]) and web service technologies that allowed secure two-
communication between users and crystallographic facilities. By 
use of secure web services, the environment provided access to the 
Cambridge Structural Database for queries. The use of Grid 
technologies allowed the ECSES environment to support 
computationally intensive operations such as melting point 
calculations. A similar project that enables control of 

crystallographic instrumentation and distributed analysis of 
experimental data is the CIMA project [8, 9]. 

 Another distributed infrastructure for crystallography was 
described by Hunter et al.  [10]. They developed AnnoCryst, a 
system that allowed users to collaboratively annotate crystal 
structures and share such annotations in a secure and asynchronous 
fashion. The system is designed such that annotations for a given 
crystal structure are stored in a secure fashion and can easily be 
linked to actual crystal records, which may be stored in arbitrary 
databases. An important focus of the system is the ability to allow 
groups of scientists to collaborate on annotations. Given that 
annotations are stored, security played an important role, to allow 
authentication of such annotations. The infrastructure was 
developed using a variety of open source components and made 
extensive use of published standards. For example, they employed 
Shibboleth [11] to enable identity management and XACML to 
define and enforce access control policies. They also made 
extensive use of social networking standards such as Friend Of A 
Friend (FOAF) to describe relationships between contributors and 
semantic web tools (such as Annotea for the storage of annotations) 
and standards like the Resource Description Framework (RDF), a 
semantic technology that allows one to encode facts and relations 
between facts, and with the appropriate tools, perform reasoning on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A schematic timeline highlighting the evolution of distributed infrastructure. The upper row highlights the evolution of hardware from single, isolated 

computers to a grid type infrastructure. The lower row highlights the evolution of software from standalone programs to those capable of interacting with a 

distributed infrastructure. 
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collections of these. The latter aspect is important since it allowed 
them to link to other semantic resources such as Connotea and the 
Protein Ontology as well as allow sophisticated semantic searches 
(using SPARQL) over the annotation collection. This project 
highlights that distributed infrastructures need not be restricted to 
computational services or data storage. Indeed, the AnnoCryst 
project combines data storage with collaborative interaction, 
allowing multiple distributed users to enhance entries in a wide 
range of crystal structure repositories. 

 Though annotations play an important role in fields such as 
bioinformatics and genetics, it is only recently that their importance 
has been recognized and implemented in chemistry and allied 
fields. More specifically in the field of computer aided drug design, 
one can imagine that annotations could make data sharing much 
more efficient. For example, rather than individual groups 
developing their own ontologies on collections of drug like 
molecules and related objects (such as assays), distributed 
annotations could serve as the base platform on top of which 
individualized ontologies could be built. In this sense, the work 
being done in the field of crystallography (as well as bioinformatics 
and so on) can provide insight into good practices as well pitfalls of 
such approaches. 

3.2. Infrastructures for Computational Chemistry 

 Paolini and Bhattacharjee [12] described the development of a 
web service infrastructure to access thermochemical data and 
calculations. They aggregated a variety of thermochemical data 
sources, such as NIST, NASA and CHEMKIN, into a relational 
database. In addition to storing reported data, they also performed a 
number of calculations to evaluate properties such as entropy and 
hat capacities. Access to the database is provided via SOAP based 
web services. They also highlighted the flexibility of these web 
services by incorporating them into Matlab and Microsoft Excel to 
generate formatted thermochemical data tables. 

 The field of computational chemistry has seen a number of grid 
computing initiatives. An early example is that of the 
Computational Chemistry Grid (CCG) [13]. This project was a 
three-tiered system consisting of a client side GUI, a middleware 
service and a resource layer. The middleware layer was based on 
Globus [7] and its role was to distribute jobs across the Grid, based 
on a variety of parameters such as allocations and availability. The 
primary use of this grid was to run computational chemistry 
calculations such as Gaussian and NWChem. In a similar fashion, 
Truong et al.  [14] developed a cyberinfrastructure for scientific 
computing termed CSE-Online. This project consisted of a 
centralized web portal that was the point of entry for users. Via this 
portal, a user would be able to access individual programs, upload 
datasets and extract results form prior runs. The actual 
computational services were provided by multiple, possible remote, 
servers hosting individual applications. The infrastructure also 
provided resource management tools such as job scheduling via 
PBS and job submission to the TeraGrid. Communication between 
the portal and individual compute servers is performed via web 
services. In addition to the online portal, the project also developed 
a desktop interface to the portal which provided a variety of 
capabilities such as relational database for storage, visualization of 
results, generation of input scripts and so on. In terms of 
functionality, the infrastructure was oriented towards ab-initio 
calculations and molecular simulation. Sanna et al.  [15] described 
the development of a Grid infrastructure for quantum chemistry 
computations using Gaussian [16]. Their infrastructure was based 
on a three-tier architecture comprised of an interface tier 
(responsible for communications between the grid infrastructure 
and user clients), the grid tier (responsible for management of grid 
resources and scheduling) and finally the resource tier (responsible 
for the actual computations) and has been described by De Meo 
[17]. It is interesting to note that the quantum-computing grid 

described by Sanna was adapted from a Grid infrastructure 
developed for a bioinformatics application - highlighting the 
generality of this approach. 

3.3. Infrastructures for Cheminformatics 

 Finally, we consider efforts to develop distributed infrastructure 
specifically in the area of cheminformatics. An early effort at a 
distributed infrastructure for chemical information is the World 
Wide Molecular Matrix (WWMM) developed by Murray-Rust and 
co-workers at Cambridge University. The focus of this project was 
the development of web services that would provide access to data 
sources (usually some form of relational database) and methods 
(such as format conversions). As part of this project, they also 
investigated the use of XML databases (specifically XIndice) for 
efficient storage and querying of CML [18] documents. 

 In 2005, the NIH funded several groups (including Indiana 
University) under the Molecular Libraries Initiative (MLI) [19]. 
These groups were termed Exploratory Centers for 
Cheminformatics Research (ECCR) and were tasked with extending 
the state of the art in cheminformatics research. Though much of 
the research focused on methodology development, a significant 
aspect of their work was in providing access to tools, methods and 
data. For example, the University of North Carolina has developed 
CarolineChemBench (http://ceccr.unc.edu/), which is a web 
interface to a wide variety of tools, primarily focusing on QSAR 
modeling. As the name suggests, the application aims to be a web-
based workbench for QSAR modeling. It provides access to a 
number of molecular descriptors and machine learning methods. A 
similar application was developed at the Renssalear Polytechnic 
Institute, which focused on a descriptor development and machine 
learning methods for QSAR modeling (http://reccr.chem.rpi.edu/). 
As with the UNC efforts, their tools were exposed in the form of a 
web application that allowed users to upload data and develop 
predictive models. Characteristic of both these efforts is that access 
to their tools and methods is strictly via a web application. In other 
words, a user must navigate to their web page and use the 
functionality provided by the developers. For many cases, this is 
sufficient. However, it is can be an inflexible approach at times and 
does not allow one to “mix and match” methods. North Caroline 
State University was also designated an ECCR and their focus was 
on machine learning methods and validation methods for statistical 
models. They developed a web application in which users could 
upload data and automatically develop a series of predictive 
models. As part of their work, they developed a tool called 
PowerMV [20] which is a standalone tool to examine SD files and 
generate a wide variety of molecular descriptors. This tool was 
employed by their web application, in the backend, to provide input 
to the machine learning algorithms. 

 Apart from the NIH funded groups mentioned above, a number 
of other workers have developed infrastructure for various 
cheminformatics tasks. For example, Sild et al.  [21] have described 
a Grid infrastructure termed OpenMolGRID which connects 
geographically distributed computational resources to provide 
seamless access to data and applications. Their infrastructure was 
comprised of three main components: a data warehouse, data-
mining module and molecular engineering module. These high 
level modules are based on the UNICORE [22] Grid middleware. 
More specifically, they incorporated tools such as CODESSA Pro 
and MOPAC, which were linked into workflows using MetaPlugin 
[23] allowing users to automate the QSAR modeling process across 
the Grid. 

 Karthikeyan et al.  [24] described a distributed infrastructure, 
termed ChemSTAR based on Java Remote Method Invocation 
(RMI) to distribute molecular descriptor calculations over multiple 
machines. They employed this infrastructure to rapidly evaluate 
molecular descriptors for 11 million molecules. This infrastructure 
differs from OpenMolGRID in that it does not use a standard 
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middleware such as Globus or UNICORE. In this sense, the use and 
deployment of ChemSTAR is not as seamless as some other 
infrastructures. It should also be noted that other projects such as 
VCCLAB [25] have also employed a Java RMI approach to 
connect geographically distributed resources to provide access to 
various cheminformatics and data mining tools via a single point of 
entry. As with OpenMolGrid, it employs a three-tier architecture in 
which users employ a local client (written as a Java applet), which 
communicates with a “SuperServer” acting as the middleware 
between the client applet and the actual compute servers. 

3.4. Semantic Technologies 

 Though the Semantic Web [26] is not a distributed 
infrastructure per se, developments in this area are becoming key to 
efficient, automated and seamless use of distributed infrastructures. 
A number of efforts have been reported on the incorporation of 
semantic technologies into chemical information sources. A number 
of technologies have been developed to represent, search and 
manipulate semantic information including RDF, SPARQL, and 
FOAF. A number of workers have co-opted these technologies to 
develop novel applications in cheminformatics. This is not 
surprising since chemical information is extremely diverse (ranging 
from structural information, patents and journal articles to drug 
targets, side effects and pathway information) and traditional 
methods of storage and manipulation do not always make the links 
between individual concepts apparent. 

 Much of the work in this area, as applied to chemistry builds on 
the seminal work by Murray-Rust and co-workers in developing an 
XML format to represent chemical data, termed Chemical Markup 
Language (CML) [18]. An early application of CML to represent 
the semantics of chemical information was CMLRSS [27], which 
was used to enhance RSS feeds with chemical data. Casher et al. 
[28] described an ontology, termed SemanticEye, to enhance the 
extractability of chemical information from various documents 
(primarily PDF) and store such information in an RDF repository. 
Some examples of the information they extracted included 
document metadata (encoded as Adobe XMP within a PDF), 
Digital Object Identifiers (DOI) and structures represented as 
InChI’s. They also developed a browser-based interface allowing 
users to explore the metadata repository and examine individual 
documents or even aggregate documents based on their semantic 
relationships (such as similarity based on the InChI’s contained 
within the documents). Taylor et al.  [29] also described the use of 
RDF to represent and store chemical information. An important 
aspect of their presentation was the ability to incorporate 
provenance information into the repositories. They also examined 
the use of triple-stores to store chemical information and their 
behavior with respect to size of the collection. They performed 
benchmarks such as chained RDF queries and insertion of RDF 
files into the triple-store and showed that they could obtain 
reasonable performance with up to 36 million triples (representing 
the unique molecules from the ZINC [30] database). 

 Another project in the area of semantic chemistry being carried 
out by the Royal Society of Chemistry and is termed Project 
Prospect. The goal of this project was to markup journal articles in 
the field of chemistry such that one could link articles to other 
source of information in a semantic manner (as opposed to direct 
URL’s). Thus, they employed the Gene Ontology [31] and IUPAC 
Gold Book to identify terms within the documents, highlighting 
them on the fly. In addition, they were able to extract chemical 
entities using OSCAR3 [32] and display chemical structures for the 
entities that were successfully extracted. Though restricted to 
chemistry journal articles, this project highlights the utility of 
semantic markup, since searches over a document collection can 
employ not only exact or fuzzy textual matches, but also perform 
semantic queries that make use of the extracted metadata. 

 Most recently, the oreChem project (http://research.microsoft. 
com/en-us/projects/orechem/) aims to integrate all aspects of 
chemical information, ranging from publications to experiments, 
computation and data in a single semantically-rich framework. The 
work involves description of data models, implementation of 
exchange protocols and the development of tools for data extraction 
(say from PDF publications) and data capture (such as from 
analytical instrumentation). 

4. A CYBERINFRASTRUCTURE FOR CHEMINFORMATICS 

 In this section, we present the cheminformatics 
cyberinfrastructure developed by the Cyber Infrastructure 
Cheminformatics Collaboratory (CICC) at Indiana University. This 
project was funded under the NIH MLI initiative and was tasked 
with developing a distributed infrastructure that would incorporate 
a wide variety of cheminformatics data sources and methodologies. 
The overarching goal of the project was to provide multiple, 
flexible approaches to access cheminformatics methods and data. In 
this section we discuss various aspects of this project including 
methodology development and cheminformatics web services. 

4.1. Novel Cheminformatics Methodologies 

 Key to a cyberinfrastructure for cheminformatics is the 
development of novel cheminformatics methodologies. In this 
context, we have been developing methods that address a number of 
areas in cheminformatics ranging from characterization of chemical 
spaces and quantitative structure-activity relationships to analysis of 
chemical documents. 

4.1.1. Characterizing Chemical Spaces 

 Chemical spaces are defined for a set of molecules in terms of a 
collection of molecular descriptors. Given that one can generate 
thousands of descriptors [33], chemical spaces can have high 
dimensionality. Given a suitably selected chemical space, a 
common task is to characterize the distribution of the molecules in 
the chemical space. This is formally termed diversity analysis [34] 
and a number of methods have been described in the literature [35-
38]. We recently described a method termed R-Nearest Neighbor 
(RNN) curves that allows one to characterize the spatial distribution 
of molecules in arbitrary chemical spaces by measuring the density 
of the chemical space around a given molecule [39]. An immediate 
application of the method is to identify outliers in a dataset. The 
method has also been extended to the problem of a priori 
evaluation of the number of clusters in a data set. Traditionally, one 
has had to perform multiple clusterings to identify the “best” 
number of clusters. In this context, “best” is determine using one of 
the many cluster quality measures such as the silhouette width [40], 
Dunns index [41] and so on. The RNN-curve method allows one to 
analyze the dataset to identify the number of clusters, without 
having to perform the clustering itself. In many ways this method is 
similar to the “gap statistic” described by Tibshirani et al.  [42], but 
is not based on any distributional assumptions. Though the method 
does have some drawbacks related to specific spatial distributions, 
experiments on real and synthetic datasets [43] indicate that it is 
able to correctly identify the number of clusters in a dataset. The 
observations were also confirmed by comparing the results with 
those obtained using the silhouette width based on multiple 
clusterings. 

4.1.2. Chemical Clustering 

 We have also applied the deterministic annealing algorithm [44, 
45] to the problem of clustering large collections of chemical 
compounds. The specific method employed combined deterministic 
annealing and Generative Topographic Mapping (GTM) [46]. In 
comparison to simulated annealing, deterministic annealing does 
not involve any Monte Carlo steps and rather, optimizes the energy 
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function iteratively, as the annealing temperature is reduced. This 
procedure compares well with the traditional k-means clustering 
algorithm. Given that the clustering is usually performed in a high 
dimensional space, the use of GTM allows us to map this space to a 
lower dimensional form (usually 2D) such that the results of the 
clustering can be easily visualized. The motivation for this work 
was to investigate to what extent the algorithm could be parallelized 
on multi-core processors. We performed experiments [47] on a 4-
core and a 8-core compute cluster and considered a collection of 
40,000 compounds taken from PubChem, characterized using 1052 
bit BCI keys (Digital Chemistry, UK). Our experiments indicated 
that, depending on the number of clusters specified, we could 
achieve a speed of 7X on an 8-core system. While this approach 
requires that one specify the number of clusters a priori, the results 
indicate that clustering large compound collections can make good 
use of modern multi-core systems. 

4.1.3. QSAR Methodology Development 

 In the area of quantitative structure-activity relationships we 
have focused on both applications and methodologies. For example, 
we developed QSAR models to predict the anti-cancer activities of 
compounds tested against the 60 NCI cancer cell lines by the 
Developmental Therapeutics Program. The random forest was 
employed to predict the anti-cancer activity of a compound based 
on MACCS keys as structural descriptors. The performance of the 
models ranged from 75% to 80% correct over the 60 cell lines [48]. 
We also employed random forest models to predict the ability of 
compounds to inhibit cell proliferation in a variety of human cell 
lines. These cell lines have been used in high-throughput screening 
(HTS) assays [49], which tested approximately 1300 compounds. 
This data was used to train the individual random forest models, 
which were then used to predict the cytotoxicity of an external set 
of compounds. The challenge in this study was the fact that the 
assay results for a number of the cell lines were severely 
unbalanced. We investigated several methods to alleviate this 
problem and developed a method termed “bit spectra” to allow us to 
compare a new dataset with the training set to determine whether 
the model will lead to reliable predictions for the new dataset [50]. 

 We have also performed methodological investigations into a 
number of fundamental aspects of QSAR modeling. We developed 
a method termed “ensemble feature selection” [51] whose goal is to 
identify a suitable set of descriptor such that it optimizes the 
predictive performance of multiple, disparate models. Traditionally, 
one uses a feature selection algorithm (such as a genetic algorithm) 
to identify a suitable set of descriptors that optimizes the 
performance of single model. In general, this set of descriptors will 
not be optimal for a different type of model. As a result, most 
studies have used different set of descriptors for different models, 
leading to the possibility that the individual models encode different 
aspects of the structure-activity relationship (SAR). The ensemble 
feature selection employs a genetic algorithm whose objective 
function is function of the performance of multiple models (say, 
linear regression and neural network models). The result of the 
procedure is to identify a single set of descriptors that maximizes 
the predictive performance of the individual models. Clearly, the 
models are not as good as they would have been if they had been 
optimized separately. Yet, our results indicate that the loss in 
performance is minimal. 

 More recently, we have described a novel approach to 
characterizing “activity cliffs” in a dataset [52]. Activity cliffs are 
defined as pairs of compounds that are structurally very similar, yet 
exhibit large differences in activity [53]. Such cliffs represent 
problems for traditional machine learning based QSAR methods. At 
the same time, these cliffs represent very important aspects of the 
structure-activity relationships in a dataset. As a result, it is useful 
to be able to explore the cliffs in a dataset. We described the 
Structure Activity Landscape Index (SALI) [52] that allows one to 

numerically characterize activity cliffs of varying degrees. The 
approach generates a symmetric matrix termed the SALI matrix, 
which can be used to easily summarize the nature of the 
“landscape” represented within the dataset. However, the matrix is 
a rather broad view and so we developed a novel network 
visualization of the activity cliffs in a dataset. This view is derived 
from the SALI matrix, in which we consider each compound a node 
and two nodes are connected if they have a SALI value greater than 
a user defined cutoff. An example of such a SALI network is shown 
in Fig. (2). The key feature is that it highlights the most significant 
activity cliffs and allows one to intuitively explore the changes that 
lead to increased activity. We have also employed the SALI to 
measure the ability of structure-activity relationship models to 
encode the SAR’s present in a dataset [54]. This is based on the 
observation that since activity cliffs represent the most “interesting” 
parts of an SAR, a model encoding the SAR should be able to 
capture these cliffs. In other words, a model that identifies more 
cliffs than another model could be considered the “better” model. In 
this context, a model “identifies” a cliff by predicting the ordering 
of the nodes in a SALI graph. We have shown that the method is 
very general in that it can be applied to any type of model that aims 
to encode an SAR such as QSAR docking, CoMFA and 
pharmacophore models. Retrospective experiments indicate that it 
is indeed able to differentiate between statistically similar models 
by considering the SAR’s encoded by the model, as opposed to 
pure numerical metrics. 

4.2. Cheminformatics Tools 

 Though a large component of cheminformatics research 
revolves around the development of efficient algorithms to analyze 
large and diverse chemical datasets, it is vital that such research not 
be restricted to theoretical analyzes. In other words, implementation 
of cheminformatics research is arguably as important as algorithm 
development. To this end, we have developed a number of tools 
implement many of the methodologies described in Section 0 and 
allow users to access both methods and data in a variety of 
environments. In this section, we provide a brief overview of the 
various end-user tools that have been developed as part of the CICC 
at Indiana University. 

 With the growing importance of the Internet as a means of 
information presentation and exchange, the number of Web-
accessible chemical information sources has increased significantly. 
Examples include online journals, chemical databases [55], blogs 
and Wiki’s. By definition, most such sites focus on their core 
competencies. Thus, online journals will not maintain large 
chemical structure databases. Similarly blogs that talk about 
chemistry will usually link to other resources. It is clear, however, 
that aggregation of the various different types of information can 
enhance the experience of a user visiting such sites. For example, if 
a user visits the Table of Contents page of an online journal, it 
would be useful to let the user know of any web pages that have 
commented on a specific article. Similarly, when performing a 
structure search on PubChem, it can be useful to display a 3D 
structure of a molecule. However, PubChem does not provide such 
structures, so these must be obtained from somewhere else. 

 The above scenarios, which focus on aggregating information 
from multiple sources, can be achieved using Userscript 
technology. Essentially, this is a browser technology (specifically 
for Mozilla based browsers) that allows a user to run a Javascript 
program on a webpage during load time. The script itself is free to 
access any resource on the Internet. However, the key feature of 
these scripts is that they can rewrite the webpage that the user is 
viewing in a transparent manner. That is, the user sees the rewritten 
page, rather than original page. We have recently described the 
application of this technology to cheminformatics applications [56]. 
One of the userscripts we reported allows one to view 3D structures 
for molecules obtained via searches on the PubChem website. Thus, 
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if one searches for the term “aspirin” and then clicks on the link for 
CID 2244, one is taken to a page summarizing the information for 
that molecule. With the userscript installed, the page is rewritten to 
include two new links. The first link brings up a Jmol window 
displaying the 3D structure obtained from the Pub3D database at 
Indiana University. The second link allows one to download the 3D 
structure in SD format. Note that this procedure is entirely 
transparent to the user and no manual interaction is required. A 
second example is a userscript that operates on Table of Contents 
pages for ACS journals. A number of blogs are now available that 
refer to various journal articles using their Digital Object Identifier 
(DOI). The blog posts are aggregated at http://cb.openmolecules. 
net/, a resource which can be queried by DOI to identify which 
blogs refer to a given journal article. If the userscript is installed, 
then when the user navigates to a Table of Contents web page, the 
page is modified to provide new links in the article summary that 
refer the user to those blog posts. A modification to this script 
allows the user to click on the link, which will cause a “balloon” to 
popup containing the commentary in question. An example is 
shown in Fig. (5). Note that this procedure requires no intervention 
on the part of the user. More importantly, it requires no support 
from the journal website. 

 However, the browser is not the only environment in which 
users access chemical information. A number of cheminformatics 
tasks are based on mathematical and statistical modeling techniques 
(such as QSAR). A common environment for this is the R package 
[57]. This is primarily a statistical programming environment, and 
thus does not directly support cheminformatics. We have described 
an add-on to R called rcdk [58], which interfaces the CDK [59] (a 
Java library for cheminformatics) to R. As a result, one can directly 
load chemical structures in the R environment and perform various 
cheminformatics operations such as similarity calculations, 
fingerprint generation and evaluation of molecular descriptors. A 
related package called rpubchem [58] allows direct access to the 

PubChem database from within R. Thus, one can perform keyword 
searches and down structure and property information from both the 
PubChem compound and bioassay collections. Together with the 
rcdk package, it allows the user to directly access and manipulate 
chemical information within the R environment. 

 In addition to the browser based tools and R packages, we have 
developed a number of standalone tools for a variety of tasks. 
Though the standalone tools by themselves do not represent a 
distributed infrastructure, they provide core functionality, allowing 
groups outside of Indiana University to replicate our infrastructure. 
Many of these are based on the CDK library and examples include 
a GUI for calculation of molecular descriptors and fingerprints and 
a command line tool that allows one to search 3D structure 
collections using pharmacophore queries. In addition, the research 
on structure-activity landscapes described in Section 0, has been 
implemented in a program which performs the SALI analysis and 
allows one to interactively explore SALI graphs. We also recently 
developed a program to generate 3D structures from SMILES 
strings, termed smi23d (http://www.chembiogrid.org/cheminfo/ 
smi23d/), that is able to convert a SMILES string (which is a linear 
textual representation of a chemical structure) to a 3D structure in 
SD format (a multiline text format, capable of storing 3D 
coordinates, which SMILES cannot support). The program uses a 
linear embedding scheme to generate an initial set of “rough” 3D 
coordinates, which are then optimized using the MMFF94 force 
field [60]. The use of this force field implies that compounds 
containing atoms that have not been parameterized in MMFF94 
cannot be handled. This is contrast to programs like Corina [61, 62] 
that use a fragment-based approach and thus are able to handle a 
wider range of compounds. It should also be noted that smi23d 
generates a single conformer - which may not necessarily be the 
lowest energy (or even low energy). This program was used to 
construct the Pub3D database, discussed in Section 0. All the tools 
discussed here have been publicly released under Open Source 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). A SALI network derived for a set of melanocortin-4 receptors at a 50% cutoff. Each node represents a compound. Nodes are connected by an ordered 

edge (compound with lower activity at the tail and with higher activity at the head) if their SALI value is greater than the user specified cutoff. 
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licenses allowing them to be freely reused and incorporated into a 
variety of applications. 

4.3. Distributed Access to Data and Methods 

 Given that many groups, distributed across the world, have 
developed a wide variety of cheminformatics tools and algorithms, an 
important issue that must be addressed is the deployment of such tools 
in a manner that makes them accessible to experts and non-experts. 
Traditional approaches to tool deployment have been to simply make 
binaries (or provide the actual source code) available on a web site 
and have potential users download them. This approach assumes a 
level of software management and engineering expertise on the part 
of the user. Furthermore, one may also have to investigate the 
possible dependencies and obtain them before the actual 
cheminformatics tool can be used. This implies that the downloaded 
codes must be maintained. This approach is certainly useful in some 
instances, but is not an elegant solution for users who are not experts 
in the field of cheminformatics and simply want to use the tool. 
Moving away from locally running software is to provide web 
interfaces to tools. Wide varieties of cheminformatics methods are 
available in this form (such as VCCLab [25], CECCR and RECCR). 
Though such a mode of deployment is useful for the non-expert user, 
the flexibility of such an approach is limited to that defined by the 
developer. In addition, web page front ends are not always amenable 
to programmatic access - each tools’ web page being slightly 
different from the others. 

 Our approach to the problem of deployment has been to focus 
on the use of web services, which allow us to provide a consistent, 
distributed, programmatic interface to arbitrary methods, tools and 
data-sources. 

 Specifically, we have created web service interfaces for several 
cheminformatics methods, standalone tools and databases. Though 
these services are hosted at Indiana University, they can be hosted 
anywhere on the Internet. Each such service is accessible in the 
form of function calls. As a result, one is able to combine multiple 
services in a single program. Clients can be written in virtually any 
language that supports the Simple Object Access Protocol (SOAP). 
As a result, one can generate the traditional web page interfaces to 
these services, which communicate with them via SOAP calls. 
However, if alternative interfaces (such as GUI’s, command line 
programs or even inclusion into workflow tools such as Pipeline 
Pilot and Knime) are desired, one can easily combine multiple 
services. Table 1 summarizes the various services that are currently 
provided by the CICC and we provide a brief description of the 
services below. 

4.3.1. Core Cheminformatics Services 

 We classify the services into four categories. First, we have a 
set of core cheminformatics services. These services represent 
fundamental cheminformatics operations such as fingerprint 
generation, similarity calculations, molecular descriptors and so on. 
Clearly, the bulk of these operations will not be used in a 

Table 1. A Summary of the Various Web Services Currently Hosted by the CICC. The Services Include those Developed at the 

CICC as Well as Services that are Derived from External Software Packages 

 

Class  Service Functionality 

Cheminformatics Similarity 
2D similarity using the Tanimoto coefficient and 3D similarity using the descriptor-based method described 

by Bellester et al.  [66]. 

 Molecular descriptors TPSA, XlogP and other descriptors 

 2D structure diagrams Generates 2D diagrams from a SMILES string 

 Drug-likeness Currently returns the number of Lipinski failures 

 Utility Fingerprints, file conversion 

 CMLRSSServer Generates an RSS feed from CML formatted molecules 

 InChIGoogle Search Google using an InChI 

 OSCAR3 Extract chemical structures from text 

 ToxTree Obtain toxicity predictions 

 3D Coordinates Generate 3D coordinates from SMILES strings 

Databases PubDock 
Obtain ligand structures and associated score values by PubChem compound ID or SMARTS based 

similarity searches 

 Pub3D 
Obtain a low energy 3D conformation of PubChem structures by compound ID, SMARTS based similarity 

or by 3D similarity searching 

Statistics Modeling Builds regression (OLS, CNN, RF) and classification (LDA) models. Perform clustering using k-means 

 Feature Selection Select descriptor subsets for linear regression using backward or forward stepwise regression 

 Plots Generate 2D scatter plots and histogram plots 

Applications Toxicity  Ensemble of random forests that provide predictions of animal toxicity 

 Mutagenicity 
Single random forest that predicts mutagenicity of a compound given a SMILES string based on data studied 

by Kazius et al.  [81] 

 Anti-cancer activity 
A set of random forest models that predict anti-cancer activity against the 60 cell lines managed by the NIH 

DTP program 

 
Pharmacokinetic 

parameters 
Modified version of the pkCell calculator [64] 
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standalone manner. Rather, we expect that these will be used in 
combination with other services. An example might be an 
application that performs database queries and would like to display 
2D depictions of chemical structures. Rather than integrate a 
standalone cheminformatics library in the application, the developer 
can simply make a function call to the web service and obtain a 
PNG of the 2D depiction. 

4.3.2. Statistical Services 

 The second class of services, represent statistical services. We 
specifically developed these services since predictive modeling is a 
common cheminformatics application. The underlying statistics 
engine is based on R. Individual R features such as sampling 
methods, model building (linear regression, neural networks and so 
on) and feature selection are presented as SOAP web services. The 
architecture of these web services has been described in detail 
previously [63]. The R web service infrastructure goes beyond 
simply exposing specific R methods as web services. Given the 
importance of predictive models in cheminformatics, we provide an 
infrastructure that allows one to deposit predictive models built in R 
(stored in the R binary format) and then deploy the model via the 
web service infrastructure. In this context, “deploy” implies that the 
model is publicly available and can be used to obtained predictions 
for new molecules via the web service. The infrastructure also 
allows one to retrieve the models, so they can be used locally if 
desired. An example of models deployed in this manner are a set of 
random forest models developed to predict anti-cancer activity on 
the NCI 60 cancer cell line dataset [48]. 

4.3.3. Data Source Services 

 The third class of web services provides access to data sources. 
For example, we have created a number of databases that can be 
accessed via traditional SQL queries. Examples of these databases 
include mirrors of the PubChem compound, substance, synonym 
and bioassay tables as well as derivatives of PubChem, such as a 
3D structure database (see Section 0). Traditionally, one would 
access such databases via SQL queries or web pages that execute 
said SQL queries. In contrast, we have wrapped a number of 
common queries, and presented them as SOAP based web services. 
As a result, clients can access these database using simple function 
calls, thus avoiding the construction of possibly complex SQL 
queries. At this point we don not provide a web service method that 
allows arbitrary SQL queries due to security issues. Even with this 
restriction, such an approach is still useful, since now the database 
can be accessed from arbitrary environments that support SOAP 
calls. As a result, there is no need for clients to construct SQL or 
scrape web pages to extract the results of queries. 

4.3.4. Application Services 

 The final class of services represent full fledged applications 
that have been wrapped as SOAP web services. This approach can 
be useful when certain applications have not been designed as a 
library. As a result, a web service essentially runs them as 
standalone programs and returns the output (possibly reformatted) 
to the user. From the users point of view, the command line details 
are hidden and only the functionality provided by the application is 
visible. The result of this approach is that arbitrary programs 
written in any language can be wrapped using Java web services 
and made to appear as simple function calls. As noted in Section 0, 
a number of workers have deployed computational chemistry 
programs in this manner. As part of our cyberinfrastructure, we 
have developed web service interfaces to a number of 
cheminformatics applications including ToxTree (http://ambit.acad. 
bg/toxTree) and a program design to evaluate pharmacokinetic 
parameters [64]. One aspect of wrapping application as web service 
is that certain applications can take a long time to compute a result. 

In general, this is not as common a case in cheminformatics as in 
some other areas such as ab-initio calculations. A number of 
protocols have been devised to address the issue of asynchronous 
web service methods. WS-Notification and WS-Eventing have been 
put forward by the Web service community to provide call-back 
and notification mechanisms for long-running services. WS-
Notification is included in the Globus Web Service stack. More 
recently, the Amazon Web Services team has put forward the 
Simple Queue Service. This is standard WSDL-described Web 
Service that allows other applications to update and query the state 
of long-running applications. Finally, RSS and Atom feeds, 
although normally used to syndicate human-readable news items, 
can also be used to convey state-machine updates in machine-to-
machine communications. Microsoft uses an extension of this 
approach, called FeedSync, in its LiveMesh software. 

 The utility of a collection of web services providing a variety of 
cheminformatics functionality is key to developing novel applications 
that go beyond traditional command lines and GUI’s. As described in 
Section 0, developing of user scripts to enhance and modify web page 
content is dependent on the ability to communicate with arbitrary web 
services for 2D depictions and structure databases. Similarly, we have 
been exploring the use of Ubiquity (https://wiki.mozilla.org/Labs/ 
Ubiquity), which is an extension to Firefox allowing one to easily 
develop mashups. An example of such functionality is the ability to 
select a piece of text in a web page and display the SMILES and 
associated structure if it is a chemical compound. This ability hinges 
on the use of a web service interface to our local PubChem mirror 
that allows us to search for compound synonyms. With the increasing 
number of web services being made available in the life sciences, the 
ability to “mashup” functionality to provide novel representations of 
chemical information becomes not only easy but, we expect, 
commonplace. 

4.4. Adding Value to PubChem 

 The PubChem project is a component of the Molecular 
Libraries Initiative [19] and was designed to be a central repository 
of chemical structure and biological assay information. As of 
August 2008, it contained 2D structures (along with a number of 
calculated properties) for approximately 17 million compounds and 
40 million substances. In addition to chemical structures, the 
database also stores synonyms for the compounds. Since one of the 
goals of the MLI was to identify chemical probes that could be used 
to investigate biological systems, the screening centers created by 
the MLI have performed 1157 assays and the results of these have 
also been deposited in PubChem. Clearly, the repository provides a 
wealth of information on the effects of chemical structure in 
biological systems and thus presents a ripe opportunity for chemical 
data mining. 

 While an extremely useful resource, one aspect that has not 
been addressed by the project is that of 3D chemical structures. A 
number of cheminformatics tasks such as CoMFA, docking and 
pharmacophore searches require that one generate 3D structures. 
Thus, if one were to employ compounds from PubChem, one would 
need to use some external software to generate such structures. 
Another advantage of 3D structures is the ability to perform 
searches based on shape similarity. For example, the PDBCal [65] 
database reports thermodynamic properties for a number of 
receptor-ligand complexes. The database provides 3D structures 
and it would be useful to be able to search PubChem for molecules 
with shapes, similar to those stored in PDBCal. Though PubChem 
provides structure and substructure search capabilities, such 3D 
shape searching is not currently possible. 

4.4.1. A 3D Structure Database 

 To address the lack of 3D structures, we have developed a 
derivative database of PubChem containing single conformers for 
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99.9% of the entire collection. The database is termed Pub3D and is 
available at http://www.chembiogrid.org/cheminfo/p3d. We used 
the smi23d program (Section 0) to generate the 3D structures for 
the PubChem collection. After generation of the 3D structures, we 
then created a Postgres database storing the structure files as text 
fields. We then evaluated shape descriptors using the CDK for each 
molecule, using the technique described by Ballester and Graham 
Richards [66] and implemented in the CDK. These descriptors 
consist of 12 values that represent the first three moments of the 
distributions of distances between the atoms in a molecule and three 
four points. In contrast to more rigorous shape representation 
methods such as volume overlaps (implemented in ROCS, 
OpenEye Inc.), this method is cruder. However, since it represents a 
molecule as a 12-element vector, shape comparisons can be 
performed extremely rapidly. Specifically, the shape similarity 
between two molecules in this representation is given by 

Si, j = Xi,k X j,k( )
2

k=1

12
1

 

where Xi,k  represents the k ‘th descriptor for the i ‘th molecule. 
Note that this definition of similarity is different from that given by 
Ballester et al., where they employ the reciprocal of the normalized 
Manhattan distance between two shape descriptor vectors. For our 
purposes, the use of such a representation allowed us to store these 
vectors in the database and then index shape descriptors using an R-
tree [67] index, which is a spatial index that partitions a space and 
allows efficient nearest neighbor queries. Given that similarity 
queries can be formulated as nearest neighbor queries, this allows 
one to identify molecules with similar shapes in a rapid fashion. 
Fig. (3) presents an example of the query performance, with a shape 
database of 10 million structures. 

4.4.2. Scalability of Searches 

 While our benchmarks indicate that shape searching in very 
large databases can be performed efficiently there are two 
significant drawbacks. Firstly, the database only stores a single 

conformer. In general, this limits the utility of the database. As a 
result, we are in the process of generating multiple conformers for 
the compounds in Pub3D, using in-house code for conformer 
generation. We expect that with multiple conformers, the database 
will be of general purpose utility. This however leads to the second 
problem. Assuming an energy window of 3.5 Kcal, our initial runs 
indicate that the average number of conformers per molecules is 
approximately 12. For the current collection of 17 million 
structures, this will create a database of more than 100 million 
structures. For such a large database, the size of the index becomes 
sufficiently large, that simply searching the index can take a long 
time. This is further exacerbated by the fact that in an ideal case the 
index would be stored in RAM. However, for such a large database, 
the amount of RAM (greater than 10GB based on current estimates) 
required to host it in memory, is not economical. As a result, much 
slower disk accesses will be required to search the index, negating 
the utility of the index. 

 To address this issue we have developed a distributed 
infrastructure that will allow scaling of the database to hundreds of 
millions of rows, yet achieve good performance. The infrastructure 
is shown schematically in Fig. (4). We first performed a clustering 
of the database using the simulated annealing clustering method 
described in Section 0. The result of this procedure is to generate 
several clusters ranging in size from 200K to 1.5 million molecules. 
A key aspect of the clustering is that similar molecules are 
generally contained within the same cluster (though molecules on 
the edges of a cluster may be ambiguous). Each cluster of 
molecules is then hosted as a separate database, with it’s own disk. 
We then implemented a broker that sits in front of the individual 
databases. The broker acts as an interface between user queries and 
actual query submission to the individual databases. The broker 
provides a web service interface, providing the advantages 
described in Section 0. When the broker receives an SQL query, it 
distributes the query to each of the individual databases 
asynchronously. It then collates the responses from each database 
and returns the result set to the user. The advantages of this 
infrastructure are obvious. As the original database grows in size, 
one need only add more clusters. Obviously, the clustering process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). A benchmark of the Pub3D database highlighting shape similarity query performance. The database contained 10 million structures. R represents a 

radius, larger radii implying more dissimilar molecules. CID’s represent PubChem compound identifiers. 
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is time consuming, but is a relatively infrequent process. Another 
bottleneck is the collation of results. If each cluster returns many 
thousands of results, then the collation procedure may become 
slow. However, for many practical cases, searches with such large 
result sets may not be very useful and hence the current approach 
appears to handle common scenarios quite efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). A schematic diagram highlighting the decomposition of the 

original, monolithic Pub3D database into clusters, which are queried in 

parallel. 

4.4.3. Compound Promiscuity 

 Another area where we have attempted to add value to 
PubChem using a distributed infrastructure is in a service that 
allows one to identify possible promiscuous compounds within the 
PubChem bioassay collection. Promiscuous compounds are those 
that exhibit activity over a wide range of assays, due to factors not 
related to actual target binding [68, 69]. Examples of phenomena 
that can lead to promiscuous behavior include aggregation [70] and 
redox cycling [71]. Since such compounds are not actually active, it 
is useful to exclude them from further analysis. Though groups 
have reported the development of predictive models to identify 
promiscuous compounds [69, 72], a simple way to highlight 
compounds that might be promiscuous is to count the number of 
times that they are reported as active in all the assays they are tested 
in. We developed a simple web application that utilizes a web 
service interface to a local mirror of the bioassay database and 
allows users to provide PubChem compound ID’s and obtain a 
summary of the assays in which they have been noted as active. 
Clearly, this approach can be fooled - for example, if a compound is 
tested in few assays, it may be difficult to state that it is 
promiscuous. In such cases, the “frequentist” approach can be 
enhanced with the use of heuristics. For example, one could employ 
a list of functional groups that are known to be reactive and hence 
could lead to promiscuous behavior. 

4.4.4. RSS Feed Views of PubChem 

 A final aspect of adding value to PubChem is the use of RSS 
feeds. Traditionally, RSS feeds have been used by website to notify 
subscribers of new content or updates. It is natural step to apply this 
to databases, which are updated on a regular basis. To investigate 
the use of RSS feeds for PubChem, we constructed a mirror of 
PubChem at Indiana University. We then utilized a local web 
service interface to the mirrored database that allows one to execute 
a variety of queries (identify similar structures, retrieve structures 
by compound ID, substance ID or synonym and so on). The web 
service was used to generate an RSS feed for user-defined queries. 
For example, the user could search for the term “Viagra” at 
http://www.chembiogrid.org/cheminfo/rssint.html. The result of 
this search is an RSS document, rather than the usual web page. 
The RSS document is intended to be viewed in an RSS reader (such 
as Sage or Google Reader) and each entry of the feed is an 
individual hit from the database that matches the query. More 
importantly, the user can now bookmark the field and when viewed 
at a future time, will be updated with any new database entries that 
match the original query. Furthermore, we construct the feed using 
CMLRSS [27], which allows one to embed chemical information 
using CML within the RSS feed. As a result the feed generated 
from the above website will contain 2D and 3D (if available) 
chemical structures of the compounds matching the query. These 
structures can be visualized in any CMLRSS capable reader such as 
Bioclipse [73]. Though we currently only provide an RSS feed for 
synonym based searches it is quite easy to extend it to arbitrary 
searches against the PubChem databases. Examples include 
searches for compounds satisfying certain property ranges 
(molecular weight, heavy atom count etc.) or new assays which 
tested a compound of interest. 

5. CASE STUDIES 

 In this section, we present two case studies where our 
infrastructure has played a role in real-world applications. These 
applications were chosen since they highlight the utility of our 
infrastructure in rapidly developing new applications by using a 
“mix and match” approach, without having to worry about specific 
tools and libraries. 

5.1. Virtual Screening for Anti-Malarial Drug Candidates 

 Malaria is a disease endemic to much of South America, South 
East Asia and Africa and is reported to affect nearly 300 to 500 
million individuals every year [74]. Though anti-malarial drug 
research has been carried out for over 70 years, drug resistance has 
become a worrisome issue. There has been much focus on 
identifying novel targets in the genome of P. falciparum, as well as 
new compound classes, that exhibit increased potency and higher 
efficacy. A number of groups have focused on the design of novel 
anti-malarials using a variety of computational methodologies such 
as docking and pharmacophore modeling. Recently, a few groups 
have applied large Grid computing technologies to this problem 
[75], though there are not many cases where the computational 
designs were validated with in vitro experiments. We have been 
collaborating with Prof. Jean-Claude Bradley of Drexel University 
in the development of novel anti-malarial compounds. Prof. 
Bradley is a synthetic chemist and is focusing on the Ugi reaction to 
generate drug candidates. Since the Ugi reaction consists of four 
reagents, it is easy to show that one can synthesize millions of 
compounds depending on how many kinds of each reagent are 
available. As a result, we have focused on utilizing our 
computational infrastructure to generate virtual libraries and then 
prioritize compounds within such a library. 

 The first step in the procedure was to generate a virtual library, 
given a set of candidate reagants. The Ugi reaction requires the use 
of an amine, carboxylic acid, ketone and isonitrile and when the 
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compound structures are provided in the form of SMILES, it is 
relatively easy to implement a procedure to generate all possible 
combinations of the reagents. We developed a web application that 
utilized the CDK based cheminformatics web services to validate 
structures and perform substructure searches that allowed us to 
using string manipulation methods to generate the final library. The 
application also made use of OpenBabel to provide “clean” 
SMILES back to the user. The result of the application is that, non-
experts in cheminformatics can easily construct arbitrarily large 
virtual combinatorial libraries. 

 Given that the application was used to generate virtual libraries 
of sizes ranging from 71,000 to 550,000 compounds, it would be 
infeasible to actually synthesize and test them all. Thus, the next 
step was to prioritize the library and suggest a small number of 
compounds to be synthesized. The focus of the study was to 
identify inhibitors for the falcipain-2 enzyme, a cystiene protease 
that plays a central role in the erythrocytic stage of the malarial 
parasite [76]. A crystal structure of this enzyme was available in the 
PDB (1YVB) and we performed a docking study to identify which 
of the Ugi products from the virtual library would behave as 
possible inhibitors. We first generated conformations for a 71,000 
member virtual library using Omega 2.2.1 (OpenEye Inc.). Given 
that conformer generation can be time consuming, we performed 
the calculation on a Condor cluster. Each node in the cluster was a 
dual core Intel Xeon (2.4GHz, with 4MB cache) with 4 GB of 
RAM. By running the conformer calculation process in parallel, we 
achieved a speed up of 28 over a single processor calculation. 
Given a set of conformers, we then proceeded to dock them in the 
active site of falcipain-2. As before, we performed this calculation 
on the Condor cluster, utilizing 6 (dual core) CPU’s and achieved 
similar speedups. The procedure is summarized as a flowchart, 
show in Fig. (6). The result of this procedure was that were able to 
rapidly screen the virtual library and provide a ranking of the 
compounds. These rankings were then provided to Prof. Bradley 
who then selected 10 compounds for synthesis and assay. These 
compounds were then tested in a cell-based assay and four 
compounds were identified with micro-molar activities (in vitro and 
in vivo) and five compounds were identified with similar activities 
in vivo (unpublished data). 

5.2. Prediction of Anti-Cancer Activities 

 The NCI Developmental Therapeutics Program (DTP) provides 
a 60-tumor cell line dataset, which is a valuable resource for the 

development of new anti-cancer agents. The dataset consists of 
assay results that measure the ability of 44,653 compounds to 
inhibit one or more cancer cell lines. Note that this is a subset of the 
entire collection (consisting of approximately 250,000 compounds) 
and represent the compounds for which screening data is available. 
The cell lines represent a variety of cancers (melanomas, leukimeas, 
cancers of the breast prostate and so on) and have been collected 
over a period of 18 years. The readouts represented in the dataset 
include growth inhibition (GI50), lethal dose (LD50) and total 
growth inhibition (TGI). In addition to such dose related 
information, the untreated cell lines have been analysed using 
micro-arrays providing gene expression information. 

 We recently described a study [48] that attempted to perform 
large scale data mining over the entire 60 cell line dataset using a 
variety of techniques ranging from a SMARTS based pattern 
extraction algorithm to decision trees and random forests. In many 
ways, the approach was similar to the PASS procedure [77], which 
also developed a series of predictive models across a variety of 
target classes, allowing one to obtain a “predictive profile” of a new 
compound. In this paper we briefly describe the random forest [78] 
models that were developed as they directly involved our 
distributed infrastructure. The random forest was selected due to a 
number of favorable features such as the lack of dependence on 
feature selection and the ability to avoid overfitting the data. We 
generated 166 bit MACCS keys to characterize the molecules. We 
then built the a random forest model for each cell line using the 
implementation in R [57]. The models were developed on a local 
machine, not hooked into our infrastructure. Each model took 
approximately 16.5 min to build and we employed a simple 
parallelization scheme allowing us to develop all the models in 
under 8 hours. Given that the data for each cell line was quite 
unbalanced (in favor of inactives) we employed a biasing scheme, 
where we specified that each tree in the ensemble would sample 
preferentially from the active subset of a given cell line. The 
performance of the models was reasonable, with the worst model 
amongst al 60 exhibiting 67% correct predictions overall and the 
best model exhibiting 77% correct predictions overall. When the 
active class was considered the performance ranged from 74% to 
79% correct predictions over the 60 models. 

 After developing the models they were deployed into out R web 
service infrastructure. The 60 models were stored in binary format, 
generating 3 model files each storing 20 models. These files were 
deposited within a remote R server. At startup, the R server 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). An example of a userscript that modifies online journal web pages to include links to commentary located elsewhere on the Internet. (a) displays the 

web page in the absence of the userscript. (b) shows the web page when the user script is active. 
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identifies available model files and loads them into memory. This is 
especially useful for the NCI random forest models, since they are 
quite large in terms of memory usage. As a result, loading them on 
the fly would be time consuming. Once loaded into memory, we 
can then access them using the SOAP based web service interface. 
Specifically, we developed a simple Java class that would accept a 
SMILES string and would automatically generate the MACCS keys 
for the input molecule. The class would then connect to the R server 
via a web service and obtain a prediction. Note that it is also 
possible for a user to bypass this helper class and directly connect 
to the R server via the public web service interface. In such a case, 
they would have to provide their own MACCS keys. The R server 
returns the predictions of all 60 cell lines along with a confidence 
measure (defined in terms of the number of trees that predict the 
compound as being active). The data can then be displayed in any 
manner. We have provided a simple web page interface, which 
allows users to paste SMILES strings and obtain a variety of textual 
and graphical representations of the results. The application can be 
found at http://www.chembiogrid.org/cheminfo/ncidtp/dtp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). A schematic flowchart highlighting the procedure used to generate 

virtual libraries and perform docking of these libraries against the Falcipain-

2 receptor of P. falciparum. 

5.3. Distributed Services and Open Notebook Science 

 Recently, the paradigm of Open Notebook Science (ONS) has 
been gathering momentum. The idea underlying ONS is that as one 
performs experiments (or computations), the data generated at each 
step is made publicly available. There are many motivations for this 
- transparency of research, reproducibility, sharing data (both 
positive and negative results) and so on. While there are a number 

of issues related to provenance, attribution and related features, a 
number of scientists have been actively engaging in this type of 
research. In this section we highlight how a specific ONS project 
has made use of distributed infrastructures to support and guide 
experiment. For a more detailed discussion the reader is referred to 
Bradley et al. [79]. 

 Prof. Jean-Claude Bradley of Drexel University recently 
initiated the Open Solubility Challenge project. The motivation for 
this was that a number of the products generated in the Ugi reaction 
project, described above, were soluble, making extraction difficult. 
While a number of tools exist to predict solubility, all are focused 
on aqueous solubility. In addition, there is literally no published 
data on solubility in non-aqueous solvents, which could be used to 
develop a predictive model. Thus the Solubility Challenge 
(http://onschallenge.wikispaces.com/) was started to experimentally 
measure the solubilities of a variety of compounds (related to the 
Ugi project) in a variety of non-aqueous solvents. Experimental 
contributors provided data from the US and the UK and all data 
were publicly collected in a shared Google Spreadsheet. In addition, 
experimental procedures were provided in detail on a wiki 
associated with the project. While successful at generating 
relatively large amounts of data, the experimentalists desired to 
perform experiments in a more efficient manner. A number of 
enhancements to the process were envisaged. These ranged from 
suggestions of new compounds to measure (to ensure that the 
chemical space was being sampled in a sufficiently diverse 
manner), to simple and intuitive visualizations of the data being 
collected in the online spreadsheet and automation of simple 
calculations such as molarity and so on. It was clear that developing 
standalone applications would require users (who were novices or 
non-experts in cheminformatics) to learn new concepts and would, 
in general, increase work-load. As a result, we investigated ways in 
which the online data could be enhanced using distributed services. 

 The simplest application (http://toposome.chemistry.drexel.edu/ 
rguha/jcsol/sol.html) was to provide effective summary and 
visualizations of the spreadsheet data. This was achieved in the 
form a web page, which contained Javascript code to access the 
spreadsheet data via the Google Data API’s. This allowed one to 
search for specific solutes and solvents and generate tabular 
summaries of the data, including structure depictions via web 
service calls to CDK-based services at Indiana University. In 
addition, using the Google Chart API we were also able to generate 
bar chart summaries of the data, allowing the experimentalists to 
easily spot outlier measurements. The application was enhanced by 
making use of the CDK-based cheminformatics services at Indiana 
University to support substructure searches in the solubility data. 
As a result users could search for all experiments involving an 
anthracene substructure or all experiments focused on carboxylic 
acids. This application was rapidly developed due to the fact that 
the individual components were accessible in a distributed fashion. 
Furthermore, the application essentially had no dependencies - 
since all domain specific functionality was accessible via 
distributed services. In fact, we were able to host the application at 
multiple sites simply by copying a single HTML file to a new host. 
Another visualization approach was developed by a collaborator 
from Oral Roberts University, in which the solubility data was 
visualized dynamically in the Second Life environment (a virtual 
3D environment). 

 We also enhanced the spreadsheets themselves by incorporating 
various data sources using the Google API’s. For example, Google 
Spreadsheets allows one to use the content of an URL to populate a 
cell. One of the problems facing the experimentalists was that 
molarity calculations required one to manually look up molecular 
weights and densities. We were able to automate this aspect by, 
again, making use of CDK-based services to calculate molecular 
weights from SMILES, which were then automatically saved in the 
spreadsheet. By combining our PubChem-based data source 
services with the ChemSpider API, we were also able to 
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automatically insert density information from chemical names. 
Combined, these services were then able to automatically calculate 
the weights of a given compounds required to achieve a desired 
concentration. More importantly, this was a “live” calculation. As 
new data was entered, these services were automatically contacted 
to fill in the required information. 

 A final aspect of the project was the development and 
deployment of predictive models of solubility. These were initially 
developed at Indiana University using our existing statistical 
service infrastructure. Models were developed in R, once again 
using live data from the Google spreadsheet and deployed in a 
REST based web service. Thus, users could programmatically get 
predictions for new services. For ease of use we also provided a 
web page front-end that allowed users to specify SMILES and get 
predictions of the solubility of the specified molecules. Other 
collaborators have recently deployed their models in a similar 
fashion. These models together with web service accessible 
molecular descriptors allow the experimentalists to more efficiently 
choose new compounds for testing. The use of descriptors along 
with dimension reduction techniques such as principal components 
analysis (PCA) allowed the users to examine the distribution of the 
tested molecules in high dimensional chemical spaces - either 
suggesting compound classes for new experiments or even 
identifying regions of chemical space that were insufficiently 
tested. Fig. (7) summarizes the various components of this project 
including Data Storage (via wiki’s, Google applications and 
ChemSpider), Data Views (such as the web page based application 
described above and the Second Life based 3D visualization) and 
Data Modeling. However, the key feature of this diagram is that all 
components are connected together in a loosely coupled manner via 
distributed services (methods and data), allowing new collaborators 
to provide their own enhancements and services and users to gain 
access to these new services in a seamless manner. 

6. HAS DISTRIBUTED COMPUTING REALLY HELPED? 

 We have presented a number of recent developments in 
distributed computing in the context of drug discovery. But one 
must ask, have these developments really moved the field of drug 
discovery forward? Given the move to larger, more complex 
biological systems, there is no doubt that advances in computing 
power have allowed investigators to study these systems in 
unprecedented detail. Yet, many such studies have simply used 
large compute clusters (either local or in the form of the Grid) to 
process larger datasets or run longer simulations. While this is 
certainly one use of distributed computing, it is only one aspect of 
this field. In essence, data parallel problems benefit enormously 
from larger numbers of computers (with the caveat that data 
transfer can become increasingly expensive). Yet, from a practical 
view, such approaches do not necessarily make the lives of drug 
developers easier. Many of these applications require very 
specialized expertise in computational chemistry and computer 
science. Furthermore, these types of applications do not always lend 
themselves to use in loosely coupled systems, where one might mix 
and match methods and data. 

 It is only recently, that we have seen true developments in 
distributed computing applications for drug discovery that address 
the multitude of methods and data sources and attempt to bring 
them together under a few general frameworks. While the 
preceding sections have highlighted the use of web services as a 
mechanism to integrate methods and data, problems remain. One of 
the most pressing problems is that individual groups develop and 
deploy their own methods in ways that are usually specific to them. 
Invariably this requires users to either download software 
(sometimes necessitating compilation etc.) or else go to static 
websites. It is only recently that there have been some efforts to 
address these problems. Some general approaches exist such as the 
use of Pipeline Pilot as a deployment platform. But this still 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). A summary of the components involved in the Open Notebook Science project, highlighting computational and experimental portions and how they 

interact with each other using distributed, public resources ranging from web services to Google applications. 
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requires that users have access to Pipeline Pilot. Guha  [80] 
described an approach to model development and deployment using 
R-based web services. While useful, this still implies that users will 
be familiar with R (at least for model development). Ideally, the 
community would reach a consensus on interfaces. In other words, 
how should users interact with resources (which might be programs 
or websites or web services) to upload data, get predictions, get 
models and so on. An effort that has begun to address these issues 
within the domain of computational toxicology is the OpenTox 
project (http://www.opentox.org), which is developing standards for 
REST based interfaces to various predictive toxicology models. 

 However, even with such developments, one of the most 
fundamental drawbacks is that many of these efforts are oriented 
towards other cheminformatics or computational chemistry 
developers. While a few projects have developed graphical 
interfaces, the usability, of such interfaces is rarely considered. 
While having “one-click” access to the Grid is helpful, tools to 
collate results and integrate them with other data sources are either 
lacking or non-existent, at least in the field of cheminformatics and 
chemistry. Thus, it is difficult and tedious to be able to summarize 
information on small molecules, drug targets, literature and 
biological pathways for a given disease. Certainly, all the 
information is out there and some sources have connections with 
others. But, there are no significant public tools that allow true 
integration of such information sources. And this is where we 
believe that distributed infrastructures need to step up and begin to 
address from the non-experts point of view. 

 A few attempts have been made to make these tools and 
services accessible to non-cheminformatics experts. Examples of 
such approaches include Greasemonkey scripts and even simple 
web page front-ends on top of the services themselves. Yet, in 
nearly all cases, the usability of these tools is relatively low. While 
usability issues are not directly connected to the idea of distributed 
services, the uptake of the latter will be influenced by the former. In 
this sense, some of the infrastructures described above (such as 
AnnoCryst) are actively addressing the issue of usability, but much 
work remains to allow non-experts to effectively make use of all the 
backend functionality that is the focus of distributed infrastructures. 

 Finally, there is the issue of access to methods and data. Given 
that the goal of distributed infrastructures is to allow access to 
methods and data, transparently over the network, this makes the 
deployment of proprietary methods and data in such a manner 
problematic. While one could simply add authentication 
mechanisms (and indeed the common web service protocols do 
allow for such mechanisms), it can be unclear at times what the best 
policy should be? This leads one into licensing and other legal 
issues. Furthermore, when it comes to data, the situation can 
become more murky. As a result, it is becoming clear that the 
distributed future envisaged by us and other groups is dependent on 
having free access to methods and data. While efforts are being 
made to develop Open Source tools that will support these 
approaches, many useful tools (and datasets) are proprietary and 
must be protected behind authentication layers. 

7. CONCLUSIONS 

 In this paper we have presented a review of the start of the art in 
distributed systems designed to handle chemical information. With 
the rise in automated, high throughput systems, the large amounts 
of data that are being generated impose a number of requirements 
on a storage and analysis framework. First, the resultant data must 
be easily accessible using standardized protocols. While this is not 
always the case, the use of relational databases and standard web 
service protocols (such as SOAP) go a long way to allowing 
uniform and well-defined access methods. Second, it is vital that we 
have methods that can analyze such data, to generate insight into 
the workings of the underlying chemical or biological systems. We 
have presented recent work carried out at the Indiana University 

Chemical Informatics Cyberinfrastructure and Collaboratory 
(CICC) that has focused on developing cheminformatics 
methodologies for a variety of tasks including QSAR, clustering, 
outlier detection and model domain applicability. In addition to 
methodology development, we have designed a web service based 
deployment infrastructure that is suitable for the large chemical 
datasets characteristic of modern drug discovery efforts. Many of 
these services provide convenient interfaces to both data sources 
and computational methods. In the latter case, we have provided 
SOAP-based web service methods to both cheminformatics and 
statistical methods. Along with developing methodoligies and 
infrastructure development, we have created data source derived 
from PubChem. Notable amongs them, is the Pub3D resource that 
provides single conformer 3D structures, for 99% of PubChem. The 
database allows retrieval of structures based on compound ID’s or 
by 3D shape similarity searches and can be accessed by direct SQL 
or via SOAP web services. We have also described several case 
studies that have enabled collaboration between cheminformatics 
experts and non-experts, allowing the latter to make use of 
cheminformatics technologies without requiring expertise in 
cheminformatics or distributed systems. 

 The development of distributed infrastructures stresses the 
collaborative nature of scientific discovery. In the field of drug 
design, such an approach is vital given that multiple domains of 
expertise (chemistry, biology, computation) are required to fully 
understand chemical and biological systems. A distributed 
infrastructure, such as described here, allows multiple groups, with 
different domains of expertise to easily access and analyze a wide 
variety of chemical and biological data. 

ACKNOWLEDGEMENTS 

 We would like to thank Prof. Jean-Claude Bradley for 
synthesizing the Ugi products identified in our docking procedure 
and Prof. Philip Rosenthal (UCSF) for performing the assays. 

ABBREVATIONS 

CML = Chemical Markup Language. An XML format to  
   represent chemical structures and properties. 

ECCR = Exploratory Center for Cheminformatics Research. 

FOAF = Friend Of A Friend. A protocol based on RDF, to  
   encode social relationships. 

JSON = Javascript Object Notation. A compact, text based  
   approach to serializing data to be exchanged across a  
   network. 

ONS = Open Notebook Science. An approach to scientific  
   research whereby results and protocols are made  
   immediately available in a public fashion. 

PBS = A batch scheduling system. 

PCA = Principal Components Analysis. 

QSAR = Quantitative Structure Activity Relationship. A  
   mathematical modeling approach that attempts to  
   correlate chemical structure to biological activity or  
   physical property. 

RDF = Resource Description Framework. A mechanism to  
   encode facts and relationships based on facts, that  
   allows for automated reasoning on such collections. 

REST = Representation State Transfer. An architectural  
   approach to the development of web based  
   applications. 

SDF = A text based, multi line format to represent chemical  
   structures. This format can handle 3D coordinates  
   and other structure related information. 
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SMARTS = A language used to specify regular expression like  
   patterns to identify chemical substructures. 

SMILES = A linear, text based format to represent chemical  
   structures. The format can only represent  
   connectivity. 

SOAP = Simple Object Access Protocol. A protocol that  
   supports communication between web services. 

SPARQL = SPARQL Protocol and RDF Query Language. An  
   SQL-like language used to perform queries in  
   collections of RDF statements. 

SQL = Structured Query Language. A language to perform  
   queries in relational database systems. 

WSDL = Web Services Description Language. An XML  
   format that allows one to specify the interface to a  
   web service, by defining input and output types,  
   possible exceptions that may be thrown and so on. 
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